ROBUST FAULT DIAGNOSIS IN CATALYTIC CRACKING CONVERTER USING ARTIFICIAL NEURAL NETWORKS
نویسندگان
چکیده
منابع مشابه
Robust Fault Diagnosis in Catalytic Cracking Converter Using Artificial Neural Networks
The paper presents designing of a robust fault diagnosis system for a catalytic cracking process using artificial neural networks. Identification of the considered process is carried out by using recurrent neural networks. To achieve a robust fault diagnosis system, an uncertainty associated with the model is also taken into account. Neural version of the Model Error Modelling is used to deal w...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملDC motor fault diagnosis by means of artificial neural networks
The paper deals with a model-based fault diagnosis for a DC motor realized using artificial neural networks. The considered process was modelled by using a neural network composed of dynamic neuron models. Decision making about possible faults was performed using statistical analysis of a residual. A neural network was applied to density shaping of a residual, and after that, assuming a signifi...
متن کاملUsing Neural Networks for Fault Diagnosis
In this paper, a universial Fault Instance Model, which aims to solve problems existing in the present technology of fault diagnosis , such as the lack of universiality, the difficulty in the use of real time system and the dilemma of stability and plasticity, is proposed. The experiment demonstrates that the FANNC used can successfully settles the problems mentioned above by its effectively in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2005
ISSN: 1474-6670
DOI: 10.3182/20050703-6-cz-1902.01835